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Resumen

The maximal covering location problem seeks to locate a limited number of facilities to maximize the covered
demand. Commonly facilities are modeled with unlimited capacity, but this is not realistic, and in many situations,
facilities have workload limits. A limited capacity means that it is also necessary to find the best allocation of
customers to the facilities. This paper presents six demand node allocation procedures for the capacitated maximal
coverage location problem. Performed experiments show that the descending allocation of the demand nodes to the
closest facility nodes with available capacity obtains the best results, achieving a 3% improvement over the worst
allocation procedure resulted from the experiments.
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1. Introduction

Among the fundamental goals of logistics is customer satisfaction in the best conditions of service, cost
and quality Meiduté-Kavaliauskiené et al. (2014). Many situations within logistics can be modeled as a
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location problem, where it is necessary to geographically manage the allocation of resources to satisfy the
customers. The maximal covering location problem (MCLP) aims to locate a set of facilities to maximize
the covered demand of the customers. The MCLP was first introduced in 1974 Church and ReVelle (1974).
The objective of this problem is to find the best combination of the p facilities to maximize the covered
demand Church and ReVelle (1974). The MCLP has been applied in economy and society scenarios, such
as: police patrol planing Fajardo et al. (2017), location of Wi-Fi antennas Lee and Murray (2010), location
of bank branches Allahi et al. (2015), distribution of drones for medical care Pulver et al. (2016), location
of mining bases Xue et al. (2016), location of facilities for entertainment shows North and Miller (2017),
among others.
In the previous cases, facilities are modeled with unlimited capacity, but this restriction is often necessary
to be considered in real-world scenarios Xu et al. (2020). The first variant of MCLP with capacitated
facilities (CMCLP) was proposed in 1983 Chung et al. (1983). The idea is to limit the workload of the
facilities. By introducing capacity restrictions to the facilities, a new problem arises: how to allocate de-
mand nodes to facilities to maximize the satisfied demand or used capacity Church and Murray (2018).
One of the challenges in the application of the CMCLP is the study of the implications of allocation stra-
tegies Xu et al. (2020). In addition, the CMCLP is an NP-Hard problem and large instances cannot be
solved in a reasonable time by exact methods Xu et al. (2020). Heuristic and metaheuristic methods have
proven to obtain high-quality solutions in a reasonable time, as stated in Pirkul and Schilling (1991); Sha-
riff et al. (2012); Murray et al. (2019). Several proposals have been made to solve the CMCLP by means
of heuristics and metaheuristics, for example: Greedy Adding Church and ReVelle (1974), Tabu Search
Gendreau et al. (1997); Arostegui Jr et al. (2006), Genetic Algorithm Arostegui Jr et al. (2006), Variable
Neighbourhood Search Davari et al. (2013), among others.
Metaheuristics have been widely used to solve the CMCLP and its variants. Therefore, is necessary to
study the implications of allocation strategies in the amount of demand covered. For this proposal, six
heuristic procedures for the allocation of demand nodes to facilities are proposed to solve the CMCLP
using metaheuristic algorithms. Since the use of an allocation procedure has an impact on the amount of
demand covered and the capacity used, an analysis of obtained solutions for each allocation procedure
is performed, with the objective of determining the allocation that obtains the highest value of demand
served and capacity usage.

2. Methodology

2.1. Capacitated maximal covering location problem (CMCLP)

The objective of CMCLP is to maximize the total demand served by locating p facilities with capacity
constraints. The parameters and variables that define the CMCLP are the following Xu et al. (2020):

- i, I: the index and set of demand nodes.
- j, J: the index and set of facility sites.
- ai: population or demand of the node i.
- c j: capacity of the facility j.
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- di j: the shortest distance (or time) from demand node i to the facility j.
- p: number of facilities to be located.
- S: coverage distance. It is the minimum distance (or time) required between a demand node and facility

in order to be considered to be covered.
- Ni: { j|di j ≤ S} set of potential facilities that can cover the demand generated in i.
- X j: {0, 1} a binary variable which equals 1 if the facility is placed at node j, 0 otherwise.
- Yi j: {0, 1} a binary variable which equals 1 if the demand node i is served by the facility j, 0 otherwise.

The objective function is:
Maximize : Z = ∑

i∈I
∑
j∈Ni

aiYi j (1)

Subject to:
∑
j∈J

X j = p (2)

∑
j∈Ni

Yi j ≤ 1,∀i ∈ I (3)

∑
i∈I

aiYi j ≤ c jX j,∀ j ∈ J (4)

The objective function 1 seeks to maximize the total demand served by the facilities. Constraint 2 indi-
cates that the number of opened facilities must be p. Constraint 3 ensures each demand node is allocated
to only one facility of the Ni set. Finally, constraint 4 ensures that the total demand served by a facility
should not be more than its capacity c j.
Imposing capacity restrictions to facilities in location problems bring along five fundamental issues Xu
et al. (2020). The first is associated with defining an appropriate capacity for the facility. The second pro-
blem is that capacity might not be an exact limit. Therefore, some degree of relaxation of the constraint
may be required. The third problem is the rejection of clients due to capacity limitations. This problem
leads to the allocation of clients to a further away facility or another that does not improve the system
utility. Another issue is that the capacity restriction imposed may not reflect the actual workload of fa-
cilities. Finally, the addition of capacity constraints complicates the computational processing of model
solutions, making it impossible to find exact solutions in a reasonable time for some cases. Due to capacity
limitations, facilities can not serve all demand nodes within the service area. Therefore, it is necessary to
determine which demand nodes to allocate. One approach to manage this issue is to take into account the
quality of service based on travel time Pirkul and Schilling (1991). This approach aims to allocate de-
mands to the closest facility. Another proposal maximizes the covered demand and minimizes the average
distance between the demand nodes and the facilities Haghani (1996). An alternative can be to minimize
the cost of transportation from the facilities to the distribution centers and maximize the covered demand
Jabalameli et al. (2010). Finally, an additional approach consists of a dynamic model where the objective
is to maximize the covered demand, ensuring that each demand node is served by the closest facility,
penalizing assignments with excess travel time Delmelle et al. (2014). The first two proposals treat the
closest assignment as an objective function and the third impose a restriction for demand allocation to the
closest facility.
In the context of capacitated location problems, there are three main perspectives to determine the alloca-
tion of demand nodes to facilities: user optimal, system optimal, and equal fraction Church and Murray
(2018). User optimal perspective states that the system does not decide which facility serves a client’s de-
mand. In this case, the client chooses the facility that is more suitable for his convenience. When demand
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node allocation is not dependent on the system, many capacitated models assume that the closest facility
to the demand node provides the service. In Gerrard and Church (1996) is presented an analysis on this
type of assignment. In addition, the authors proposed an equitable allocation of demand nodes to equally
nearby facilities for the CMCLP.
The closest assignment states that a demand node should be assigned to the nearest facility with the ca-
pacity to serve it and within its coverage. Some examples are retail stores, libraries, post offices, among
others Church and Murray (2018). In these examples, demand nodes do not need to have a priority to be
served. However, other contexts like emergency services may need to define a priority among the demand
nodes to be served and consider situations where the system does not control which facility serves a de-
mand.
The system convenience perspective is applied when the system has control over which demand node will
be served by each facility, taking into account some characteristics of the system or an assignment that
maximizes its utility Church and Murray (2018). This perspective has been the default approach when
formulating capacitated models Church and Murray (2018). There are many cases in which the system
is responsible for the allocation of demand nodes. In police patrol, it is convenient for the system to de-
cide which police officer serves an incident. It would also be reasonable to apply the closest assignment
approach since the response time is a key element in this context. In this example, priorities for demand
nodes served must be defined, since not all incidents have the same importance.
Another example of system convenience could be the location of distribution centers. Unlike the above
examples, in this situation demand nodes could be treated without any priority. Therefore, the goal would
be to maximize the number of demand nodes served and, as a default approach, to allocate demand nodes
to the closest facility. An alternative to allocate customers to the closest facility is to define a threshold
distance that the customer would be willing to travel in to access a certain service Dı́az et al. (2017). In this
case, is necessary to define an ordered list of preferences containing the facilities within service distance
by each client.
When it is impossible to determine the behavior of the demand nodes, an equal fraction perspective can
be applied. This perspective is applied when there is not enough knowledge about the system to predict
how it will behave. The idea is to have a set of facilities that can provide service to a demand node and
since there is no knowledge about the preferences of the node, the probability that these facilities will
serve it is the same Church and Murray (2018). An example of the equal fraction perspective can be found
in Balakrishnan and Storbeck (1991), a model for the location of retail stores with capacity restrictions.
The proposed model states that a demand node can be covered by more than one facility, distributing the
portion of demand covered among facilities within service distance. Another example of the equal fraction
perspective can be the location of cellular towers. In this context, there is no control over which tower will
serve a user and there are no priorities among the users since the goal is to serve the maximal amount of
cell phones.
Most of the found proposals take into account the selection of the facility that serves a demand node, but
none of them focus on the fact that due to capacity limitations it may be required to define demand nodes
assignment priority when occupying facilities capacity. However, there is a geographical component that
establishes a relationship between the assignments and the different facilities.
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2.2. Procedures for demand allocation

In this section six demand nodes allocation procedures to obtain total demand served Z are proposed.
These are divided into two groups by the selection process of the facility that serves each demand. The
first group selects facilities randomly (RF), where each facility has the same probability to be selected.
The second group is aimed to allocate each demand node to the closest facility (NF) with the capacity to
serve it.
Finally, three types of priorities to select the demand node to allocate are defined: maximum demand
(MaxD), minimum demand (MinD), and random demand (RD). These priorities show how the capacity
of the facilities is occupied. The MaxD allocation prioritizes the demand nodes with the highest demand
values ai, therefore, the capacity of each facility is occupied in a descendant order. In the case of MinD
allocation, demand nodes are prioritized in ascendant order. As for RD allocation, demand value is not
taken into account, and demand nodes are randomly assigned to the selected facility. Finally, by com-
bining facility selection with demand allocation priority, six demand allocation procedures are obtained
(RFMaxD, RFMinD, RFRD, NFMaxD, NFMinD, and NFRD).
The Algorithms 1 and 2 describe the procedures for demand nodes allocation according to the type of
facility selection (RF and NF). Both procedures receive as a parameter the demand allocation type (Iorder)
that establishes the type of priority used.

2.2.1. Demand allocation to a random facility (RF)

This procedure allows the allocation of demand nodes to a located facility with the capacity to serve them
and di j ≤ S. Each located facility where di j ≤ S has the same probability to serve the demand node i.
Demand nodes are served in an order defined by the parameter Iorder={MaxD, MinD, RD}. It is worth
noticing that given the random component of this procedure, it is not deterministic. Algorithm 1 describes
the demand allocation procedure. The procedure sortDemandNodes, sorts the demand nodes taking into
account the established order by Iorder. The procedure sortFacilitiesByRandomOrder sorts the facilities in
random order.

2.2.2. Demand allocation to the nearest facility (NF)

This allocation procedure takes into account the perspectives of closest assignment and system convenien-
ce described above. Each demand node i is allocated to the nearest located facility j with the capacity to
serve it and di j ≤ S. Algorithm 2 describes the demand allocation procedure. Procedure sortDemandNodes
sorts the demand nodes using the order specified by Iorder= {MinD, MaxD, RD}. Procedure sortFacili-
tiesByDistance obtains the facilities J sorted by di j to the demand node i.

2.3. Computational experiments

In this section, computational experiments performed in several scenarios are presented. First, the test
instances are described. Next, a solution method for the CMCLP is presented. Finally, obtained solutions
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Algorithm 1 Allocation to a random facility (RF)
1: procedure RF(Iorder)
2: I′ = sortDemandNodes(I, Iorder)
3: C[] = /0
4: J′ = sortFacilitiesByRandomOrder(J)
5: j = 0
6: repeat
7: if X j = 1 then
8: i = 0
9: repeat

10: if j ∈ Ni & C[ j]+ai ≤ c j then
11: Yi j = 1
12: C[ j]+ = ai

13: i++
14: until i = |I′| or Yi−1 j = 0

15: j++
16: until j = |J′|

Algorithm 2 Allocation to the nearest facilities (NF)
1: procedure NF(Iorder)
2: I′ = sortDemandNodes(I, Iorder)
3: C[] = /0
4: i = 0
5: repeat
6: J′ = sortFacilitiesByDistance(J, i)
7: j = 0
8: repeat
9: if X j = 1 & j ∈ Ni & C[ j]+ai ≤ c j then

10: Yi j = 1
11: C[ j]+ = ai

12: j++
13: until j = |J′| or Yi j−1 = 1
14: i++
15: until i = |I′|

are statistically analyzed to determine the allocation procedures that accomplish the best results in terms
of served demand and used capacity.

2.3.1. Instances description

Two groups (A and B) of 2000 and 3000 demand nodes (with 150 and 250 possible facility locations, res-
pectively) are defined. In the instances of group A, demand nodes and facilities coordinates are generated
randomly over a 30x30 grid, following a uniform distribution, similar to the approach presented in Bag-
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herinejad and Shoeib (2018). In the instances of group B, the coordinates of both facilities and demand
nodes are a subset of the points of fi10639 dataset, from the Travelling Salesman Problem (TSP) instance
repository Cook (2019).
In both cases, the coverage radius S is calculated as S = 0,1 ∗max(di j). Demand values ai are uniformly
selected randomly in the interval [0,100]. Capacity values c j are computed as c j ≈ α ∗ (∑ai)/(0,5 ∗ |J|)
Xu et al. (2020), where α adjust the value of c j and takes values of α = {0,4,0,5,0,6} respectively . For
each instance five values of p are defined, which correspond to the 30,40,50,60 and 70% of |J|. As a
result, with 2 groups (A and B) ∗5 values of p∗3 values of α , 30 sets of test instances are obtained. These
instances are available at OneDrive cloud service for replication.

2.3.2. Solving the CMCLP test instances using Iterated Local Search

Proposed allocation procedures are unable to obtain the solution of the CMCLP by themself, they need
facilities to be previously located to perform the allocation of demand nodes. In this sense, to obtain a
solution of the defined instances and to evaluate the allocation procedures proposed, the Iterated Local
Search (ILS) metaheuristic is used Talbi (2009). Considering this, the CMCLP is modeled and solved as
an optimization problem using the framework BiCIAM Fajardo (2015), which provides an implementation
of the ILS metaheuristics and the required elements to define the subordinated heuristics. In our study, the
six allocation procedures are used to determine the objective function value determined by the amount of
demand covered achieved by the demand allocation obtained.
Representation of the solutions
To apply metaheuristic algorithms, a representation of the solution of CMCLP must be defined. The
solutions are coded in two parts. The first part corresponds to a binary list of size |J| which represents the
model variable X j, taking values of 1 if facility j is opened, and 0 otherwise. The second part keeps track
of demand nodes allocation. A binary matrix with size |I|x|J| is defined, which corresponds to the variable
Yi j. In this case, for each pair (i, j), the value 1 indicates that the demand node i is allocated to facility j,
and 0 otherwise. Figure 1 represents the codification of a solution with |I|= 3, |J|= 4 and p = 2.

Figura 1. Solution codification example. (Own elaboration)

Initial solution and perturbation procedures
To obtain the initial solution, a greedy-add approach is used Church and ReVelle (1974). This consists
in opening facilities in descending order, considering the amount of demand that each facility contributes
independently. Therefore, this approach obtains optimal solution when locating p = 1 facilities, although
for p > 1 optimal solutions are not guaranteed Church and ReVelle (1974).
To explore the solution space a set of four mutation operators is used. These consist in performing exchan-
ges between opened and closed facilities. The first is named 2-swap Tabrizi et al. (2011). This operator
selects two facilities randomly, one opened, and one closed. Then, the values of these facilities are ex-
changed in the solution, resulting in opening the previously closed facility and closing the one opened.
The second operator is called 2-swap with roulette Davari et al. (2013), where the facility selection is ma-

7

https://1drv.ms/u/s!AoZRhMsQM-cCgTKqoa-0p74IgwCg?e=waMfZJ


de using a roulette constructed by the probability of a facility to cover or not the demand nodes. Finally,
the facilities that cover the greatest amount of demand will have a high probability of being opened and
the facility with the lowest demand coverage will have a high probability of being closed. The last two
operators are the k-swaps and k-swaps with roulette Fazel Zarandi et al. (2013), which follow the same
principles as the above operators, but they exchange k facilities at the same time.

3. Results and Discussion

To compare the performance of approximated algorithms, non-parametric statistical tests can be applied
to justify the conclusions obtained from the analysis Derrac et al. (2011). Therefore, to determine the
allocation procedure that obtains the best objective function value (amount of total demand served), the
Friedman non-parametric test Friedman (1937) is applied. This test allows determining if there is a sig-
nificant difference in the performance of all allocation procedures. In case the significant difference is
determined by the Friedman test, the Holm post-hoc procedure Holm (1979) is performed to determine
which algorithms had significant differences concerning the algorithm with the best performance. These
tests were performed using the software KEEL Isaac et al. (2017), with a significance value α = 0,05. The
local search algorithm was executed 30 times with 10000 iterations for each instance under the six alloca-
tion procedures. This solutions were obtained using a laptop with an Intel Core i5-5200U CPU and 8GB
of DDR3-RAM. For each instance, average demand served and used capacity are analyzed. Average de-
mand served corresponds to average objective function value, determined y the equation ∑i∈I ∑ j∈Ni aiYi j.
As for average used capacity, the fraction from the total capacity of facilities used is determined by the
equation (

∑i∈I ∑ j∈J aiYi j

∑ j∈J c j∗x j
). As a result of the experiments, the solutions of the 30 test instances of CMCLP

were obtained. Table 1 shows the average of total demand served obtained from the 30 best solutions
for each instance for each allocation procedure. Next to each average, is shown the associated standard
deviation (σ) and the percent [%] of the average of total demand served.
The results in Table 1 show that the best average was obtained by NFMaxD and RFMaxD, and the worst
allocation procedures are RFMinD and NFMinD. It can be noted that the σ was small in almost all cases,
except the MinD allocations. The fact that RFMinD and NFMinD have a high standard deviation could in-
dicate that the local search procedure did not converge to good solutions and a higher number of iterations
could be required.
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Cuadro 1
Av. average total demand served, (σ ), [%] for each allocation procedure. Best values are in bold. (Own elaboration)

RFMaxD RFMinD RFRD NFMaxD NFMinD NFRD

Data S α c j p Av. (σ ) [%] Av. (σ ) [%] Av. (σ ) [%] Av. (σ ) [%] Av. σ [%] Av. (σ ) [%]

A 4.5 0.4 529 45 23805 (0) [24] 23184 (27) [23] 23792 (2) [24] 23805 (0) [24] 23405 (36) [24] 23788 (2) [24]

60 31740 (0) [32] 30771 (43) [31] 31715 (2) [32] 31740 (0) [32] 31059 (40) [31] 31703 (3) [32]

75 39674 (1) [40] 38320 (33) [39] 39632 (2) [40] 39675 (0) [40] 38659 (81) [39] 39609 (5) [40]

90 47607 (1) [48] 45833 (35) [46] 47545 (5) [48] 47610 (0) [48] 46205 (84) [47] 47499 (7) [48]

105 55540 (1) [56] 53277 (63) [54] 55448 (4) [56] 55545 (0) [56] 53624 (90) [54] 55368 (11) [56]

0.5 689 45 29745 (0) [30] 29062 (26) [29] 29732 (2) [30] 29745 (0) [30] 29311 (44) [30] 29727 (2) [30]

60 39660 (1) [40] 38594 (46) [39] 39632 (3) [40] 39660 (0) [40] 38910 (56) [39] 39618 (4) [40]

75 49574 (1) [50] 48063 (44) [48] 49528 (3) [50] 49575 (0) [50] 48471 (80) [49] 49498 (7) [50]

90 59487 (1) [60] 57497 (34) [58] 59415 (6) [60] 59490 (0) [60] 57958 (96) [58] 59347 (9) [60]

105 69400 (1) [70] 66839 (42) [67] 69285 (7) [70] 69405 (0) [70] 67299 (112) [68] 69158 (16) [70]

0.6 794 45 35730 (0) [36] 34982 (30) [35] 35714 (2) [36] 35730 (0) [36] 35239 (51) [35] 35708 (2) [36]

60 47640 (0) [48] 46487 (57) [47] 47608 (3) [48] 47640 (0) [48] 46831 (63) [47] 47591 (5) [48]

75 59549 (1) [60] 57907 (57) [58] 59494 (5) [60] 59550 (0) [60] 58292 (90) [59] 59449 (6) [60]

90 71457 (1) [72] 69260 (58) [70] 71359 (5) [72] 71460 (0) [72] 69731 (95) [70] 71254 (13) [72]

105 83362 (2) [84] 80501 (79) [81] 83172 (15) [84] 83369 (1) [84] 80947 (111) [82] 82941 (21) [84]

B 1133.8 0.4 481 75 36075 (0) [24] 34997 (37) [23] 36062 (2) [24] 36075 (0) [24] 35293 (64) [23] 36051 (3) [24]

100 48100 (0) [32] 46388 (44) [31] 48071 (3) [32] 48100 (0) [32] 46847 (83) [31] 48043 (4) [32]

125 60125 (0) [40] 57761 (61) [38] 60072 (3) [40] 60125 (0) [40] 58285 (128) [39] 60015 (7) [40]

150 72150 (0) [48] 69010 (54) [46] 72066 (4) [48] 72150 (0) [48] 69619 (155) [46] 71971 (8) [48]

175 84175 (1) [56] 80230 (75) [53] 84048 (6) [56] 84175 (0) [56] 80774 (190) [54] 83894 (12) [56]

0.5 601 75 45075 (0) [30] 43875 (25) [29] 45061 (2) [70] 45075 (0) [30[ 44216 (78) [29] 45048 (3) [30]

100 60100 (0) [40] 58224 (47) [39] 60067 (3) [40] 60100 (0) [40] 58649 (102) [39] 60033 (4) [40]

125 75125 (0) [50] 72519 (69) [48] 75067 (4) [50] 75125 (0) [50] 73024 (130) [49] 74993 (8) [50]

150 90150 (0) [60] 86709 (81) [58] 90053 (5) [60] 90150 (0) [60] 87332 (145) [58] 89919 (10) [60]

175 105175 (1) [70] 100867 (54) [67] 105028 (0) [70] 105175 (0) [70] 101454 (189) [67] 104786 (18) [70]

0.6 721 75 54075 (0) [36] 52756 (44) [35] 54060 (2) [36] 54075 (0) [36] 53116 (68) [35] 54043 (3) [36]

100 72100 (0) [48] 70067 (60) [47] 72065 (2) [48] 72100 (0) [48] 70490 (118) [47] 72022 (5) [48]

125 90125 (0) [60] 87277 (75) [58] 90058 (4) [60] 90125 (0) [60] 87843 (133) [58] 89963 (10) [60]

150 108150 (0) [72] 104392 (105) [69] 108031 (6) [72] 108150 (0) [72] 104929 (185) [70] 107832 (17) [72]

175 126174 (1) [84] 121354 (77) [81] 125967 (9) [84] 126175 (0) [84] 121839 (252) [81] 125575 (35) [84]

Table 2 shows the rankings obtained by the Friedman test for instances A, B, and Global stage. In all cases,
the p−value of the test is less than the significance level α . This confirms the existence of significant dif-
ferences among the algorithms. The allocation procedure with the best ranking is NFMaxD, both globally
and in each group of instances A and B. The worst ranking was obtained by the procedure RFMinD, being
the one with the lowest average of total demand served. Compared with NFMaxD, NFMaxD allocation
achieves an improvement of 3,21% of demand served with respect to RFMinD. It is worth noting how
RFRD and NFRD have a small difference with the best allocation procedure NFMaxD in instance group
B, with α = 0,6 and locating p = 175 facilities.
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Cuadro 2
Results of Friedman test for average total demand served. The best values are marked in bold. (Own elaboration)

Friedman Post-Hoc p-values

Method Global A B Global A B

RFMaxD 1.67 1.80 1.53 0,49 0,38 0,92

RFMinD 6.00 6.00 6.00 0,00 0,00 0,00

RFRD 3.00 3.00 3.00 0,00 0,01 0,04

NFMaxD 1.33 1.20 1.47 ∗ ∗ ∗

NFMinD 5.00 5.00 5.00 0,00 0,00 0,00

NFRD 4.00 4.00 4.00 0,00 0,00 0,00

p− value 0.00 0.00 0.00

“∗ ”: control algorithm.

Table 2 also shows the results of post-hoc procedure to determine which allocation procedures had signi-
ficant differences with respect to the algorithm with the best performance. In this case, the results of the
post-hoc show that NFMaxD has significant differences with respect to the other allocation procedures,
except RFMaxD. As it can be noted, both allocation procedures share MaxD order type. To illustrate the
distribution of the opened facilities obtained by the allocation procedures, Figure 2 shows the solutions
of an instance of group B with p = 75 and α = 0,6. The solutions show that using RFMinD and NF-
MinD there is a higher number of demand nodes served with a low demand value ai. For this reason,
these allocations procedures obtain a low overall demand served. As the capacity of the facilities is used
with demand nodes with low ai, the remaining capacity cannot be used to cover demand nodes with high
ai. However, allocating demand nodes randomly (RD) obtains a certain balance in the number of demand
nodes covered with low and high ai. This way, RFRD, and NFRD allocation procedures have a higher per-
centage of total demand served than RFMinD and NFMinD, and still, these procedures manage to cover
a higher population of demand nodes than RFMaxD and NFMaxD. For this reason, it could be said that
RD procedures accomplish a certain balance between the benefits of both MaxD and MinD procedures.
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Figura 2. Representation of obtained solutions by allocation procedure. (Own elaboration)
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Another aspect to note is the facilities located by RFMaxD and NFMaxD procedures, as they tend to lo-
cate facilities where there is a concentration of demand nodes with high demand value ai. As for RFMinD
and NFMinD procedures, higher dispersion of located facilities is obtained, covering almost all the area.
This behavior can be useful in situations where the number of demand nodes covered is more important
than the demand value ai. In the case of RFRD and NFRD procedures, the same dispersion pattern as
MinD order type can be noted. Another aspect to be noted is that NF procedures show more concentric
clusters of allocated demand nodes, in some cases avoiding the assignment of demand nodes inside the
service area of another facility.
Figure 3 shows the solutions obtained by RFMaxD and NFMaxD in more detail. As can be noted, the
NFMaxD solution has allocations between demand nodes and facilities with a di j lower than RFMaxD,
obtain an overall travel time or distance smaller than RFMaxD procedure. The NF allocations try to assign
demand nodes to the nearest facility, but sometimes there is no other option than to allocate a demand no-
de to a farther facility, due to capacity restrictions and resulting in some long assignments. Figure 3 also
shows how some demand nodes inside service area (S) are not covered due to capacity limits.

Figura 3. Fragment of solutions obtained by procedures RFMaxD y NFMaxD. (Own elaboration)

Another aspect to take into account evaluating the performance of the allocation procedures is the use of
the capacity. The highest average used capacity was obtained by RFMaxD and NFMaxD, where in most
cases there is 100% of usage. The RFRD and NFRD procedures achieved usage near to 100%. In the case
of RFMinD and NFMinD procedures, both achieved the lowest capacity usage, with a maximum of 97%
for RFMinD and 98% for NFMinD.

4. Conclusions

In this paper, six demand node allocation procedures for the CMCLP are proposed. These procedures co-
me from the need to better use the limited capacity of facilities to maximize the total demand served. After
performing statistical tests, the NFMaxD allocation procedure obtained the best performance, improving
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the solution obtained by the worst procedure, RFMinD, by 3%. The NF procedures allow a reduction of
travel distance between facilities and their assigned demand nodes.
Using RFMinD and NFMinD allocation procedures, located facilities are more dispersed across the analy-
zed region in comparison with RFMaxD and NFMaxD. As opposed to this behavior, NFMaxD and RF-
MaxD tend to locate the facilities in areas where the overall demand value is high. In terms of capacity
usage, NFMaxD and RFMaxD allocation procedures manage to occupy most of facilities capacity, ex-
ploiting to the maximum facilities workload capacity.

5. Bibliographic references

Referencias

Allahi, S., Mobin, M., Vafadarnikjoo, A., Salmon, C., 2015. An integrated ahp-gis-mclp method to locate
bank branches, in: Proceedings of the 2015 Industrial and Systems Engineering Research Conference,
Norcross, Georgia. pp. 1104–1113.

Arostegui Jr, M.A., Kadipasaoglu, S.N., Khumawala, B.M., 2006. An empirical comparison of tabu
search, simulated annealing, and genetic algorithms for facilities location problems. International Jour-
nal of Production Economics 103, 742–754.

Bagherinejad, J., Shoeib, M., 2018. Dynamic capacitated maximal covering location problem by consi-
dering dynamic capacity. International Journal of Industrial Engineering Computations 9, 249–264.

Balakrishnan, P.V., Storbeck, J.E., 1991. Mcthresh: Modeling maximum coverage with threshold cons-
traints. Environment and Planning B: Planning and Design 18, 459–472. URL: https://doi.org/
10.1068/b180459, doi:doi: 10.1068/b180459, arXiv:https://doi.org/10.1068/b180459.

Chung, C., Schilling, D., Carbone, R., 1983. The capacitated maximal covering problem: A heuristic, in:
Proceedings of Fourteenth Annual Pittsburgh Conference on Modeling and Simulation, pp. 1423–1428.

Church, R., ReVelle, C., 1974. The maximal covering location problem. Papers of the Regional Science
Association 32, 101–118. doi:doi: 10.1111/j.1435-5597.1974.tb00902.x.

Church, R.L., Murray, A., 2018. Location Covering Models: History, Applications and Advancements.
Advances in Spatial Science. 1ra ed., Springer International Publishing AG.

Cook, W., 2019. The Traveling Salesman Problem (TSP). Technical Report. Department of Combinatorics
and Optimization, University of Waterloo, Available: http://www.math.uwaterloo.ca/tsp/index.html.

Davari, S., Zarandi, M.H.F., Turksen, I.B., 2013. A greedy variable neighborhood search heuristic for the
maximal covering location problem with fuzzy coverage radii. Knowledge-Based Systems 41, 68–76.

Dı́az, J.A., Luna, D.E., Camacho-Vallejo, J.F., Casas-Ramı́rez, M.S., 2017. Grasp and hybrid grasp-tabu
heuristics to solve a maximal covering location problem with customer preference ordering. Expert Sys-
tems with Applications 82, 67–76. URL: https://www.sciencedirect.com/science/article/
pii/S0957417417302361, doi:doi: https://doi.org/10.1016/j.eswa.2017.04.002.

Delmelle, E.M., Thill, J.C., Peeters, D., Thomas, I., 2014. A multi-period capacitated school location pro-
blem with modular equipment and closest assignment considerations. Journal of Geographical Systems
16, 263–286. doi:doi: 10.1007/s10109-013-0195-2.

Derrac, J., Garcı́a, S., Molina, D., Herrera, F., 2011. A practical tutorial on the use of nonparametric

13

https://doi.org/10.1068/b180459
https://doi.org/10.1068/b180459
http://arxiv.org/abs/https://doi.org/10.1068/b180459
https://www.sciencedirect.com/science/article/pii/S0957417417302361
https://www.sciencedirect.com/science/article/pii/S0957417417302361


statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarn
and Evolutionary Computation 1, 3–18. doi:doi: 10.1016/j.swevo.2011.02.002.

Fajardo, J., 2015. Soft Computing en Problemas de Optimización Dinámicos. Ph.d. thesis. Granada
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