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ABSTRACT

Bolivia has diverse topographical features, including areas with high potential for the
installation of hydroelectric plants. The country has two major water systems: the macro basin
of the Bolivian Amazon, with a potential of 34,208 MW, and the macro basin of La Plata with
5,359 MW (Zarate, S., Villazon, M. F., Balderrama, S., & Quoilin, S., 2021), values that exceed
the current national demand. However, Bolivia is undergoing a transition and diversification of
its energy matrix by incorporating renewable energy sources, including solar and wind power
(ENDE, 2024).

The objective of this study is to implement a continuous daily hydrological modeling system
for the macro basin of the Bolivian Amazon. This tool aims to support the development of
hydroelectric projects by providing the necessary information regarding water availability in
the area, while taking into account environmental considerations and ecosystem preservation.

The WEAP (Water Evaluation and Planning) software was applied using the Soil Moisture
Method (Precipitation—Runoff) to simulate the hydrological processes during the period 1980—
2020.

Secondary information on land use and land cover was employed for model parameterization,
while climatological inputs were obtained from the Gridded Meteorological Ensemble Tool
(GMET) (NCAR, 2022). The hydrological model was subsequently rescaled both spatially and
temporally to represent four priority areas, corresponding to hydroelectric and multipurpose
systems.

The hydrological assessment was carried out in the Bolivian Amazon basin, specifically in its
headwater catchments, through the hydrometric stations coded as Q_AM_01 (El Kaka area with
21,374.86 km2), Q_AM 02 (La Paz, 31,626.85 km?), Q_AM_03 (Rurrenabaque, 48,566.91
km2), and Q_AM_04 (Gundonovia, 20,419.48 km?).

Q_AM 04 sub-basins were utilized. The statistical evaluation of the hydrological modeling in
these sub-basins showed Nash-Sutcliffe Efficiency (NSE) values ranging from 0.56 to 0.72,
Kling-Gupta Efficiency (KGE) values between 0.74 and 0.85, percentage bias (PBIAS) from
—4.8 % to 0.095 %, the ratio of the root mean square error to the standard deviation of the
measured data (RSR) from 0.53 to 0.67, and LogNSE values between 0.59 and 0.74. These
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results indicate that the model performed satisfactorily across all stations, with the highest
accuracy observed at Q_AM_01, thereby demonstrating the robustness and reliability of the
calibration process (Moriasi, et al., 2007) (Moriasi, D. N., et al., 2015) (Gupta, H. V., Kling,
H., Yilmaz, K. K., & Martinez, G. F., Decomposition of the mean squared error and NSE
performance criteria: Implications for improving hydrological modelling, 2009) (Kling, H.,
Fuchs, M., & Paulin, M., 2012).
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INTRODUCTION

Using hydrometric records from the Bolivian Amazon, daily-scale data were employed for the
hydrological model, which was implemented through the WEAP software.

WEAP (Water Evaluation and Planning) is a hydrological planning and management software
developed by the Stockholm Environment Institute (SEI). It is based on a continuous and
aggregated modeling approach within a deterministic mathematical framework, applying the
fundamental principle of water balance (SEI, 2015). The platform enables the definition of
temporal and spatial domains, system components, and alternative scenarios for evaluation
(Sieber, J., Purkey, D., & Huber-Lee, A., 2005). In this study, the Soil Moisture Method was
implemented, a semi-distributed conceptual model that represents the soil as two reservoirs: the
root zone (surface zone) and the deep zone (aquifer), allowing the simulation of runoff
generation and percolation processes.

The information provided to the WEAP software includes topography from a Digital Elevation
Model (DEM) such as HydroSHEDS-SRTM, which is used for the delineation of hydrological
basins and the disaggregation of hydrological units (land cover). Climatological data are
defined using NetCDF products from ESA-CCI-LC (European Space Agency Climate Change
Initiative — Land Cover), GMET-2020 (Gridded Meteorological Dataset 2020), and
SEI(Stockholm Environment Institute), respectively.

The basic unit used for the representation of areas is the basin, referred to as a 'catchment,’ to
which modelling parameters are assigned. In the calibration process, the six most representative
parameters are detailed in Table 1.

Table 1. Modelling Parameters

Parameter Description
Kc Crop coefficient
sSwWcC Soil Water Capacity [mm].
DwWC Deep Water Capacity [mm]
RRF Runoff Resistance Factor.
RZC (Ks) Root Zone Conductivity [mm/day]
DC (Kd) Deep Conductivity [mm/day].

Source: WEAP modeling parameters, 2025

The root zone, located in the upper reservoir, is influenced by the parameters Kc, RRF, SWC,
RZC, and the preferential flow direction governed by the slope. The lower tank, or deep zone,
depends on the parameters DC, DWC, and Z2, which refer to the percentage level of the tank;
these latter parameters assign a single value per catchment.



The efficiency of the model is evaluated using statistical criteria applied to the series of
measured in situ flows versus the modeled ones (Moriasi, D. N., et al., 2015). The representative
statistical parameters taken as performance evaluation guidelines during the model calibration
stage are Percent Bias (PBIAS), is calculated with the equation 1.
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Nash-Sutcliffe Efficiency (NSE), is calculated with the equation 2, and the ratio of the root

mean square error to the standard deviation of the measured data (RSR) [5], calculated with the
equation 3.
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The Kling-Gupta Efficiency (KGE) metric was also applied, supported by studies that have
evaluated its suitability for hydrological modeling, particularly in exploring its behavior and
relationship with other performance metrics such as the Nash-Sutcliffe Efficiency (NSE)
(Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F., 2009), (Knoben, W. J. M., Freer, J.
E., & Woods, R. A., 2019), (Kling, H., Fuchs, M., & Paulin, M., 2012).The KGE was calculated
according to Equation 4.
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Where o is the standard deviation and p is the mean, therefore the KGE uses correlation,
variability, and volume for model evaluation.

In this study, we also analyzed the Log-Nash—Sutcliffe Efficiency (Log-NSE), which is
calculated by applying the NSE metric to logarithmically transformed flow data. This variant
increases the relative weight of low flows and is particularly valuable when accurate simulation
of base-flow conditions is critical to hydrological model evaluation. Its use has been widely
supported in the hydrological modeling literature, where Log-NSE has been recommended as
a complementary performance metric to address the limitations of the traditional NSE,
especially in representing both high- and low-flow regimes (Krause, P., Boyle, D. P., & Base,
F., 2005), (Santos, L., Thirel, G., & Perrin, C., 2018), (U.S. Geological Survey, 2021). For
instance, in a machine learning streamflow modeling study, Log-NSE values were comparable
or slightly higher than traditional NSE, indicating robust model skill across flow magnitudes
(U.S. Geological Survey, 2021). In the present research, the inclusion of Log-NSE
complements the evaluation through NSE and KGE, providing a more nuanced insight into
model accuracy under low-flow conditions.

Z?:l(log(Qobs,t + 1) - log(Qsim,t + 1))2

LogNSE =1 — _—
?:1(10g(Qobs,t + 1) - log(Qobs + 1))2

(5)

Where:

e Q,ps¢= Observed discharge at time t



e Qsim¢ = simulated discharge at time t
e n = number of time steps
e log(Q,ps + 1) = mean of the log-transformed observed discharges

Adding +1 inside the log ensures that zero flow values do not cause undefined results.

This research builds upon the framework and baseline information of the 2017 Bolivia Surface
Water Balance (BHSB), developed at the monthly scale by the Stockholm Environment
Institute (SEI) in collaboration with the National Meteorology and Hydrology Service
(SENMHI), the Institute of Hydraulics at Universidad Mayor de San Andrés (IHH-UMSA), the
Hydraulics Laboratory at Universidad Mayor de San Simén (LH-UMSS), the National Center
for Atmospheric Research (NCAR, USA), and the Ministry of Environment and Water
(MMAyYA) (Ministry of Environment and Water Bolivia, 2018), (NCAR, 2022), (SEI, 2015).
The present study adapts this framework to a hydrological model focused on four prioritized
sub-basins, using updated and corrected meteorological data from GMET through 2020, and
calibrating the model specifically for these basins to improve daily streamflow representation.

METHOD

For the implementation of the hydrological model (Figure 1), the WEAP software was used,
employing the Soil Moisture Method (precipitation—runoff). The study area exhibits strongly
contrasting wet and dry periods, with the rainy season generally occurring from November to
March across the region, and the dry season prevailing during the remaining months (Ministry
of Environment and Water Bolivia, 2018). The model focuses on four prioritized sub-basins,
each monitored by an existing hydrometric station with labels Q_AM 01, Q_AM 02,
Q_AM 03, Q_AM_04 (Q_EL KAKA, Q_LA PAZ, Q RURRENABAQUE, and Q_GUNDONOVIA
respectively.), which were used for calibration and validation. The modeling period spans from
1980 to 2020, using updated and corrected meteorological data from the Gridded
Meteorological Ensemble Tool (GMET) (NCAR, 2022). Calibration was performed primarily
manually, complemented by a Python-based tool developed for this study that allows semi-
automatic parameter adjustment within defined ranges, enhancing efficiency and

reproducibility.
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Figure 1. WEAP layout of the four modeled sub-basins with hydrometric stations used for calibration in four
hydrometric stations Q_AM_01, Q_AM_02, Q_AM_03, Q_AM_04.



The hydrological model utilizes daily precipitation and temperature data from the Gridded
Meteorological Ensemble Tool (GMET), which employs station data to create continuous,
gridded analyses. Unlike other tools, GMET incorporates historical data and estimates potential
prediction errors in its assessments, allowing for the quantification of uncertainty through
interpolation that estimates the probability of occurrence and distribution of precipitation
volumes (NCAR, 2022).

Previous studies, such as the Bolivia Surface Water Balance (BHSB), used hydrological
information at a monthly scale (Ministry of Environment and Water Bolivia, 2018). In the
present model, hydrological data are used at a daily scale

Previous studies, such as the Bolivia Surface Water Balance (BHSB), used hydrological
information at a monthly scale (Ministry of Environment and Water Bolivia, 2018). In the
present model, hydrological data are used at a daily scale, along with spatial refinement focused
on four prioritized sub-basins. Daily precipitation and temperature inputs were obtained from
the GMET (Gridded Meteorological Ensemble Tool), which provides spatially gridded
meteorological data that account for variability in precipitation distribution across the study
area (NCAR, 2022). In the Amazonian portion of the model, annual precipitation varies
approximately from 500 mm to over 6000 mm, reflecting both topographic and regional
climatic gradients.

The downscaling procedure was conducted in three stages: first, the hydrological model was
adapted from a monthly to a daily temporal resolution; second, runoff coefficients were verified
using observed flow data from the region’s hydrometric stations; and third, the model was
calibrated and validated at the daily scale to ensure reliable projections under the same
conditions.

The adaptation of the continuous hydrological model in WEAP incorporated data on vegetation
cover and soil types, along with climatic variables such as relative humidity, wind speed, and
sunshine hours, projected on an annual cyclical basis. Daily precipitation and temperature
inputs were obtained from the Gridded Meteorological Ensemble Tool (GMET), which was
also employed in the Bolivia Surface Water Balance (BHSB) (Ministry of Environment and
Water Bolivia, 2018), (NCAR, 2022).

The verification of runoff coefficients highlighted uncertainties in the GMET 2020 precipitation
and temperature data, primarily associated with the infilling process, as well as with the density
and spatial distribution of available meteorological stations. These factors influence the
accuracy of gridded climate datasets and, consequently, hydrological simulations. Despite these
limitations, GMET provides one of the most consistent and updated meteorological products
for Bolivia, making it suitable for hydrological modeling applications at the daily scale (NCAR,
2022).

These sources of uncertainty affect the simulated runoff and its relationship with precipitation
at the basin scale. In contrast to the national-level BHSB, which applied precipitation correction
factors (PCF) in several basins to address underestimation issues, the present study focused on
four priority basins where daily calibration was conducted using available hydrometric stations.
Although sub-basins such as Zongo, Miguillas, Misicuni, Corani, and lvirizu are not
individually delineated in the current WEAP configuration, they are encompassed within the
modeled macro-basins. Consequently, the calibration performed here provides a robust
foundation for future refinements, including the explicit incorporation and calibration of these
sub-basins in subsequent stages of model development.



Runoff was validated at each hydrometric station by comparing the accumulated observed
flows with precipitation data from the GMET-2020 meteorological grid. These precipitation
values were multiplied by the basin area and the average daily rainfall. The results are
summarized in Table 2, which presents the Runoff Coefficient (CR) and the Precipitation
Correction Factor (PCF), both derived from the GMET-2020 dataset. These values were
calculated using a code, script that considered only the periods with available observed flow
data, within the complete model covering the entire national territory.

Table 2: Runoff coefficients (CR)

NRoO. CACHMENT CRGMET 2020
1 Rurrenabaque 0.62
2 Penhas Amarillas 0.49
3 Portachuelo 2 estrellas 0.48
4 El Sena 0.58
5 Riberalta 0.55
6 Cachuela Esperanza 0.49
7 Paraiso 0.29
8 Abapo 0.29
9 Pailas 0.31
10 Angostura 0.23
11 La Belgica 0.25
12 Puente Eisenhower 0.13
13 El Carmen 0.23
14 Puerto Villarroel 1.66
15 Santa Rosa de Chapare 0.87
16 Camiaco 0.49
17 Gundonovia 0.37
18 Los Puentes 0.60
19 Puerto Almacen 0.60
20 San Borjita 0.22
21 Puerto Junin 0.41
22 Puerto Siles 0.43
23 Matto Grosso 0.19
24 Pimenteiras 0.21
25 Pedras Negras 0.18
26 Principe 0.17
27 Campamento More 0.17
28 Guayanamerin 0.28
29 Abuna 0.38
30 Porto Velho 0.38
31 Brasilea 0.29
32 Rio Branco 0.27

For the calibration of the hydrological model, the performance was evaluated using several
widely recognized statistical criteria, including the Nash-Sutcliffe Efficiency (NSE), Kling-
Gupta Efficiency (KGE), Percent Bias (PBIAS), the Ratio of the Root Mean Square Error to
the Standard Deviation of Measured Data (RSR), and the Logarithmic Nash-Sutcliffe
Efficiency (Log-NSE). PBIAS measures the average tendency of simulated flows to
overestimate or underestimate observed flows, providing a clear indication of model bias
(Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F., 2009). NSE and Log-NSE assess



the goodness-of-fit between observed and simulated data, with Log-NSE giving additional
weight to low flows for improved evaluation of base-flow conditions (Santos, L., Thirel, G., &
Perrin, C., 2018) (U.S. Geological Survey, 2021). KGE evaluates correlation, bias, and
variability, offering a comprehensive assessment of model performance (Gupta, H. V., Kling,
H., Yilmaz, K. K., & Martinez, G. F., 2009) (Knoben, W. J. M., Freer, J. E., & Woods, R. A,
2019) (Kling, H., Fuchs, M., & Paulin, M., 2012). Finally, RSR provides a normalized error
metric derived from the RMSE, serving as a complementary indicator for model evaluation
(Moriasi, et al., 2007) (Table 3, 4 and 5).

Table 3: General statistical indices of watershed simulation accuracy (Moriasi, D. N., et al., 2015)

Performance Rating RSR NSE PBIAS (%) Streamflow
Very good 0.00 <RSR <0.50 0.75 <NSE<1.00 PBIAS <+ 10
Good 0.50 <RSR <0.60 0.65 <NSE<0.75 + 10<PBIAS <+ 15
Satisfactory 0.60 <RSR <0.70 0.50 <NSE <0.65 + 15 <PBIAS <+25
Unsatisfactory RSR > 0.70 NSE <0.50 PBIAS >+ 25

The Kling-Gupta Efficiency (KGE) was employed as an additional performance metric to
complement NSE and Log-NSE, providing a comprehensive assessment of the hydrological
model’s ability to reproduce observed streamflow dynamics. KGE considers the correlation,
variability, and bias between simulated and observed flows, offering a balanced evaluation of
model performance across different flow regimes. Table 4 presents the classification of model
performance based on KGE values, adapted from widely recognized hydrological modeling
studies (Kling et al., 2012; Gupta et al., 2009; Moriasi et al., 2007; Andreassian et al., 2015;
Bennett et al., 2013; Fowler etal., 2018; McCuen et al., 2006; Beven, 2018; Medici et al., 2019).
This classification enables the identification of areas where the model performs very well, well,
satisfactorily, or unsatisfactorily, thus supporting robust model evaluation and guiding future
calibration efforts.

Table 4: Hydrological model performance classification based on KGE

Performance
Rating

Very good 0.90 <KGE < 1.00

KGE References

(Kling, Gupta, & Andres, 2012)
(Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F., 2009)
(Moriasi, et al., 2007)
Good 0.75 <KGE < 0.90 (Andréassian, V., Perrin, C., Michel, C., Usart-Sanchez, I., &
Lavabre, J., 2015)
(Bennett, N. D., etal., 2013)
(Fowler, K. J., Peel, M. C., Western, A. W., & Zhang, L., 2018)
(McCuen, R. H., Knight, Z., & Cutter, A. G., 2006)
Unsatisfactory KGE < 0.50 (Beven, 2018)
(Medici, G., Abrahdo, R., Siqueira, J., & Marco, D. A., 2019)

Source: Author elaboration based on the cited literature.

Satisfactory 0.50 <KGE <0.75

In addition to traditional performance metrics such as NSE and KGE, the Log-Nash—Sutcliffe
Efficiency (Log-NSE) was employed to evaluate the model’s capability in simulating low-flow
conditions. Log-NSE applies the NSE criterion to logarithmically transformed streamflow data,
thereby increasing the sensitivity to low flows and providing a more balanced assessment across
the full range of observed discharges. The classification of model performance according to
Log-NSE is presented in Table 5, based on established hydrological modeling studies
(Pushpalatha et al., 2012; Perrin et al., 2001; Krause et al., 2005; Fowler et al., 2018; Beven,
2018; Medici et al., 2019). This metric complements NSE and KGE by offering nuanced insight
into the model’s performance under low-flow conditions, which are critical for hydropower
planning and water resource management.



Table 5. Classification of hydrological model performance based on Log-NSE

Per;(;rtrirr]%nce Log-NSE References
(Pushpalatha, R., Perrin, C., Le Moine, N., & Andréassian, V.,
Very good 0.75 <Log-NSE < 1.00 2012)
(Fowler, K. J., Peel, M. C., Western, A. W., & Zhang, L., 2018)
(Perrin, C., Michel, C., & Andréassian, V., 2001)
Good 0.65 < Log-NSE <0.75 (Fowler, K. 1., Peel, M. C., Western, A. W., & Zhang, L., 2018)
. § (Krause, P., Boyle, D. P., & Base, F., 2005)
Satisfactory 0.50 < Log-NSE < 0.65 (McCuen, R. H., Knight, Z., & Cutter, A. G., 2006)
. i (Beven, 2018)
Unsatisfactory Log-NSE <0.50 (Medici, G., Abrahio, R., Siqueira, J., & Marco, D. A., 2019)
Source: Author elaboration based on the cited literature.
RESULTS

The hydrological model was calibrated and validated using observed flow data from four
hydrometric stations within the Rurrenabaque and Gundonovia basins. Model performance was
assessed using multiple statistical indicators: Nash—Sutcliffe Efficiency (NSE), Kling—Gupta
Efficiency (KGE), Percent Bias (PBIAS), the ratio of the root means square error to the standard
deviation of measured data (RSR), and Log-Nash-Sutcliffe Efficiency (Log-NSE). These
metrics provide complementary insights into the model's ability to reproduce both high and low
flows, capturing temporal variability and base-flow conditions relevant for hydropower and
water management applications.

Table 6 summarizes the model performance for each hydrometric station. The results indicate good to very good
agreement between observed and simulated flows.

gtiﬂgc;]mggég Station NSE KGE PBIAS (%) RSR Log-NSE
Q AM 01 Q_EL KAKA 0.72 0.85 -0.24 0.53 0.73
Q_AM_02 Q _LAPAZ 0.64 0.74 0.095 0.60 0.71
Q_AM_03 Q_RURRENABAQUE 0.62 0.74 -0.16 0.62 0.74
Q_AM_04 Q_GUNDONOVIA 0.56 0.74 1.8 0.67 0.59

The highest performance is observed at Q_AM_o01, with a KGE of 0.85 and Log-NSE of 0.73,
classified as very good according to the criteria of Moriasi et al. (2007) and Kling et al. (2012).
Q_AM_02 and Q_AM_03 display good performance, while Q_AM_04 is classified as satisfactory,
reflecting slightly lower NSE and Log-NSE values but still adequate for hydrological
applications.

Figures 2-5 present the observed versus simulated daily flows for each station. These figures
illustrate the model’s ability to reproduce the magnitude and temporal distribution of
streamflow, including low-flow periods, which are particularly important for assessing
hydropower potential. The Log-NSE values confirm that low flows are well captured,
complementing the overall performance evaluation provided by NSE and KGE.

Overall, the combined evaluation using NSE, KGE, RSR, PBIAS, and Log-NSE indicates that
the model performs well in the study area. These results provide a robust basis for hydrological
assessments and future water resource management and hydropower planning in these basins.
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Figure 2: Modeled and observed streamflow at Q_Am_o1 hydrometric station.
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Figure 3: Modeled and observed streamflow at Q_AM_02 hydrometric station.
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Figure 4: Modeled and observed streamflow at Q_AMm_03 hydrometric station.
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Figure 5: Modeled and observed streamflow at Q_AM_04 hydrometric station.



DISCUSSION

The evaluation of the WEAP hydrological model across the four hydrometric stations in the
Q AM 01, Q AM 02, Q AM 03, Q AM 04 basins demonstrates that the model achieves
satisfactory to very good performance, depending on the site and the selected statistical
indicator. The Kling—Gupta Efficiency (KGE) and Log-Nash—Sutcliffe Efficiency (Log-NSE)
proved to be the most informative metrics, as they integrate correlation, variability, and bias,
while also providing sensitivity to low flows, which are critical for water resources management
in the Bolivian Amazon. According to the classification criteria of Moriasi et al. (2007), Kling
et al. (2012), and Pushpalatha et al. (2012), the model showed very good performance at
Q_AM_01 (KGE = 0.85; Log-NSE = 0.73), good performance at Q_AM_02 and Q_AM_03, and
satisfactory but acceptable performance at Q_AM_04. This gradient of performance across
stations reflects both the spatial heterogeneity of the basins and the challenges of representing
local hydrological processes with limited data.

The satisfactory performance of the model, even under data-scarce conditions, confirms the
robustness of WEAP as a decision-support tool. Nevertheless, the relatively lower NSE and
RSR values at Q_AM_04 indicate that improvements are needed in representing runoff
generation and flow routing in this sub-basin. Possible sources of uncertainty include errors in
precipitation forcing from the GMET dataset, generalized soil and land-use parameterization,
and the absence of explicit groundwater dynamics in the current model configuration. Previous
studies (e.g., Beven, 2018; Medici et al., 2019) have emphasized that such structural and data-
related uncertainties can limit the predictive accuracy of semi-distributed hydrological models,
particularly in regions with strong rainfall seasonality and complex geomorphology such as the
Amazonian piedmont.

An important finding is the ability of the model to capture low-flow conditions, as evidenced
by the Log-NSE values above 0.70 at three of the four stations. This is particularly relevant for
hydropower and water supply planning, where reliable simulation of baseflows is as important
as capturing peak discharges. The performance of Log-NSE complements NSE and KGE,
confirming that the model not only reproduces mean flow dynamics but also provides
confidence in assessing water availability during dry periods. Such capability strengthens the
model’s applicability for evaluating hydropower potential, ecosystem flow requirements, and
drought resilience.

Despite these encouraging results, the model still exhibits limitations in capturing extreme high-
flow events, as suggested by the moderate NSE and RSR values. This limitation is common in
hydrological models calibrated with daily data (Fowler et al., 2018), where short-term rainfall—
runoff dynamics are smoothed out. Incorporating higher-resolution climate inputs, improved
representation of soil infiltration, and sub-basin-scale parameter calibration could help address
these challenges. Additionally, the integration of automated multi-objective calibration
methods (e.g., SUFI-2, DREAM, or Bayesian approaches) would enable more systematic
exploration of parameter space, reducing uncertainty and enhancing predictive skill.

In summary, the hydrological modeling of the Rurrenabaque and Gundonovia basins
demonstrates that WEAP, when evaluated with complementary statistical metrics (NSE, KGE,
PBIAS, RSR, and Log-NSE), provides reliable results for hydrological assessments in data-
scarce contexts. While the performance ranges from satisfactory to very good across stations,
the model successfully reproduces both seasonal variability and low-flow regimes, offering a
sound foundation for hydropower planning, water allocation, and adaptation strategies under



future climate variability scenarios. Continued refinement of input data and calibration
strategies will further enhance its applicability as a strategic water management tool in Bolivia.

CONCLUSIONS AND RECOMMENDATIONS

The calibration and validation of the WEAP hydrological model in the Rurrenabaque and
Gundonovia basins demonstrate that the model provides satisfactory to very good performance,
depending on the station and the evaluation metric. The combined use of NSE, KGE, PBIAS,
RSR, and Log-NSE proved essential for a comprehensive assessment, capturing both average
flow dynamics and low-flow regimes that are critical for water resources management in the
Bolivian Amazon. The model achieved very good performance at Q_AM_01, good performance
at Q_AM_02 and Q_AM_03, and satisfactory but acceptable performance at Q_AM_04, reflecting
both the robustness of WEAP and the spatial heterogeneity of hydrological processes in the
study area.

A key conclusion is that the model effectively reproduces low-flow conditions, as confirmed
by Log-NSE values above 0.70 in most stations. This strengthens confidence in its applicability
for hydropower planning, drought management, and ecological flow assessments, where
reliable representation of baseflows is essential. However, limitations remain in the simulation
of extreme high-flow events, highlighting the need for improved climate inputs, refined soil—
vegetation parameterization, and more detailed representation of runoff generation processes.

Based on these findings, the following recommendations are proposed:

1. Data improvement: Enhance the spatial and temporal resolution of precipitation and
climate forcing data, particularly in poorly monitored sub-basins, to reduce input
uncertainty.

2. Parameter refinement: Implement sub-basin scale calibration of soil and land-use
parameters to better capture spatial heterogeneity.

3. Groundwater dynamics: Incorporate explicit representation of groundwater processes
to improve flow routing and baseflow simulation.

4. High-flow representation: Use higher-resolution hydrometeorological data and
infiltration parameters to improve the simulation of extreme flow events.

5. Advanced calibration: Apply automated multi-objective calibration techniques (e.g.,
SUFI-2, DREAM, Bayesian approaches) to systematically explore parameter space and
reduce model uncertainty.

6. Future applications: Extend the modeling framework to assess climate change impacts,
hydropower potential, and water allocation scenarios, ensuring that future management
strategies are based on robust and reliable hydrological simulations.

In conclusion, despite existing limitations, WEAP has proven to be a reliable and practical tool
for hydrological assessments in data-scarce regions such as the Bolivian Amazon. With
continued refinement of input datasets and calibration strategies, its applicability as a decision-
support tool for integrated water resources management and climate adaptation in Bolivia can
be further strengthened.
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