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ABSTRACT 

Bolivia has diverse topographical features, including areas with high potential for the 

installation of hydroelectric plants. The country has two major water systems: the macro basin 

of the Bolivian Amazon, with a potential of 34,208 MW, and the macro basin of La Plata with 

5,359 MW (Zárate, S., Villazón, M. F., Balderrama, S., & Quoilin, S., 2021), values that exceed 

the current national demand. However, Bolivia is undergoing a transition and diversification of 

its energy matrix by incorporating renewable energy sources, including solar and wind power 

(ENDE, 2024). 

The objective of this study is to implement a continuous daily hydrological modeling system 

for the macro basin of the Bolivian Amazon. This tool aims to support the development of 

hydroelectric projects by providing the necessary information regarding water availability in 

the area, while taking into account environmental considerations and ecosystem preservation. 

The WEAP (Water Evaluation and Planning) software was applied using the Soil Moisture 

Method (Precipitation–Runoff) to simulate the hydrological processes during the period 1980–

2020. 

Secondary information on land use and land cover was employed for model parameterization, 

while climatological inputs were obtained from the Gridded Meteorological Ensemble Tool 

(GMET) (NCAR, 2022). The hydrological model was subsequently rescaled both spatially and 

temporally to represent four priority areas, corresponding to hydroelectric and multipurpose 

systems. 

The hydrological assessment was carried out in the Bolivian Amazon basin, specifically in its 

headwater catchments, through the hydrometric stations coded as Q_AM_01 (El Kaka area with 

21,374.86 km²), Q_AM_02 (La Paz, 31,626.85 km²), Q_AM_03 (Rurrenabaque, 48,566.91 

km²), and Q_AM_04 (Gundonovia, 20,419.48 km²). 

Q_AM_04 sub-basins were utilized. The statistical evaluation of the hydrological modeling in 

these sub-basins showed Nash-Sutcliffe Efficiency (NSE) values ranging from 0.56 to 0.72, 

Kling-Gupta Efficiency (KGE) values between 0.74 and 0.85, percentage bias (PBIAS) from 

−4.8 % to 0.095 %, the ratio of the root mean square error to the standard deviation of the 

measured data (RSR) from 0.53 to 0.67, and LogNSE values between 0.59 and 0.74. These 
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results indicate that the model performed satisfactorily across all stations, with the highest 

accuracy observed at Q_AM_01, thereby demonstrating the robustness and reliability of the 

calibration process (Moriasi, et al., 2007) (Moriasi, D. N., et al., 2015) (Gupta, H. V., Kling, 

H., Yilmaz, K. K., & Martinez, G. F., Decomposition of the mean squared error and NSE 

performance criteria: Implications for improving hydrological modelling, 2009) (Kling, H., 

Fuchs, M., & Paulin, M., 2012). 
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INTRODUCTION 

Using hydrometric records from the Bolivian Amazon, daily-scale data were employed for the 

hydrological model, which was implemented through the WEAP software. 

WEAP (Water Evaluation and Planning) is a hydrological planning and management software 

developed by the Stockholm Environment Institute (SEI). It is based on a continuous and 

aggregated modeling approach within a deterministic mathematical framework, applying the 

fundamental principle of water balance (SEI, 2015). The platform enables the definition of 

temporal and spatial domains, system components, and alternative scenarios for evaluation 

(Sieber, J., Purkey, D., & Huber-Lee, A., 2005). In this study, the Soil Moisture Method was 

implemented, a semi-distributed conceptual model that represents the soil as two reservoirs: the 

root zone (surface zone) and the deep zone (aquifer), allowing the simulation of runoff 

generation and percolation processes. 

The information provided to the WEAP software includes topography from a Digital Elevation 

Model (DEM) such as HydroSHEDS-SRTM, which is used for the delineation of hydrological 

basins and the disaggregation of hydrological units (land cover). Climatological data are 

defined using NetCDF products from ESA-CCI-LC (European Space Agency Climate Change 

Initiative – Land Cover), GMET-2020 (Gridded Meteorological Dataset 2020), and 

SEI(Stockholm Environment Institute), respectively. 

The basic unit used for the representation of areas is the basin, referred to as a 'catchment,' to 

which modelling parameters are assigned. In the calibration process, the six most representative 

parameters are detailed in Table 1. 

Table 1. Modelling Parameters 

Parameter Description 

Kc Crop coefficient 

SWC Soil Water Capacity [mm]. 

DWC Deep Water Capacity [mm] 

RRF Runoff Resistance Factor. 

RZC (Ks) Root Zone Conductivity [mm/day] 

DC (Kd) Deep Conductivity [mm/day]. 

Source: WEAP modeling parameters, 2025 

The root zone, located in the upper reservoir, is influenced by the parameters Kc, RRF, SWC, 

RZC, and the preferential flow direction governed by the slope. The lower tank, or deep zone, 

depends on the parameters DC, DWC, and Z2, which refer to the percentage level of the tank; 

these latter parameters assign a single value per catchment. 



The efficiency of the model is evaluated using statistical criteria applied to the series of 

measured in situ flows versus the modeled ones (Moriasi, D. N., et al., 2015). The representative 

statistical parameters taken as performance evaluation guidelines during the model calibration 

stage are Percent Bias (PBIAS), is calculated with the equation 1. 

𝑃𝐵𝐼𝐴𝑆 = [
∑𝑛
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Nash-Sutcliffe Efficiency (NSE), is calculated with the equation 2, and the ratio of the root 

mean square error to the standard deviation of the measured data (RSR) [5], calculated with the 

equation 3. 
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The Kling-Gupta Efficiency (KGE) metric was also applied, supported by studies that have 

evaluated its suitability for hydrological modeling, particularly in exploring its behavior and 

relationship with other performance metrics such as the Nash–Sutcliffe Efficiency (NSE) 

(Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F., 2009), (Knoben, W. J. M., Freer, J. 

E., & Woods, R. A., 2019), (Kling, H., Fuchs, M., & Paulin, M., 2012).The KGE was calculated 

according to Equation 4. 

𝐾𝐺𝐸 = 1 − √(
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Where σ is the standard deviation and μ is the mean, therefore the KGE uses correlation, 

variability, and volume for model evaluation. 

In this study, we also analyzed the Log-Nash–Sutcliffe Efficiency (Log-NSE), which is 

calculated by applying the NSE metric to logarithmically transformed flow data. This variant 

increases the relative weight of low flows and is particularly valuable when accurate simulation 

of base-flow conditions is critical to hydrological model evaluation. Its use has been widely 

supported in the hydrological modeling literature, where Log-NSE has been recommended as 

a complementary performance metric to address the limitations of the traditional NSE, 

especially in representing both high- and low-flow regimes (Krause, P., Boyle, D. P., & Bäse, 

F., 2005), (Santos, L., Thirel, G., & Perrin, C., 2018), (U.S. Geological Survey, 2021). For 

instance, in a machine learning streamflow modeling study, Log-NSE values were comparable 

or slightly higher than traditional NSE, indicating robust model skill across flow magnitudes 

(U.S. Geological Survey, 2021). In the present research, the inclusion of Log-NSE 

complements the evaluation through NSE and KGE, providing a more nuanced insight into 

model accuracy under low-flow conditions. 
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Where: 

• 𝑄𝑜𝑏𝑠,𝑡= observed discharge at time t 



• 𝑄𝑠𝑖𝑚,𝑡 = simulated discharge at time t 

• 𝑛 = number of time steps 

• log(𝑄𝑜𝑏𝑠 + 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = mean of the log-transformed observed discharges 

Adding +1 inside the log ensures that zero flow values do not cause undefined results. 

This research builds upon the framework and baseline information of the 2017 Bolivia Surface 

Water Balance (BHSB), developed at the monthly scale by the Stockholm Environment 

Institute (SEI) in collaboration with the National Meteorology and Hydrology Service 

(SENMHI), the Institute of Hydraulics at Universidad Mayor de San Andrés (IHH-UMSA), the 

Hydraulics Laboratory at Universidad Mayor de San Simón (LH-UMSS), the National Center 

for Atmospheric Research (NCAR, USA), and the Ministry of Environment and Water 

(MMAyA) (Ministry of Environment and Water Bolivia, 2018), (NCAR, 2022), (SEI, 2015). 

The present study adapts this framework to a hydrological model focused on four prioritized 

sub-basins, using updated and corrected meteorological data from GMET through 2020, and 

calibrating the model specifically for these basins to improve daily streamflow representation. 

METHOD 

For the implementation of the hydrological model (Figure 1), the WEAP software was used, 

employing the Soil Moisture Method (precipitation–runoff). The study area exhibits strongly 

contrasting wet and dry periods, with the rainy season generally occurring from November to 

March across the region, and the dry season prevailing during the remaining months (Ministry 

of Environment and Water Bolivia, 2018). The model focuses on four prioritized sub-basins, 

each monitored by an existing hydrometric station with labels Q_AM_01, Q_AM_02, 

Q_AM_03, Q_AM_04 (Q_EL KAKA, Q_LA PAZ, Q_RURRENABAQUE, and Q_GUNDONOVIA 

respectively.), which were used for calibration and validation. The modeling period spans from 

1980 to 2020, using updated and corrected meteorological data from the Gridded 

Meteorological Ensemble Tool (GMET) (NCAR, 2022). Calibration was performed primarily 

manually, complemented by a Python-based tool developed for this study that allows semi-

automatic parameter adjustment within defined ranges, enhancing efficiency and 

reproducibility.  

 

Figure 1. WEAP layout of the four modeled sub-basins with hydrometric stations used for calibration in four 

hydrometric stations Q_AM_01, Q_AM_02, Q_AM_03, Q_AM_04. 



The hydrological model utilizes daily precipitation and temperature data from the Gridded 

Meteorological Ensemble Tool (GMET), which employs station data to create continuous, 

gridded analyses. Unlike other tools, GMET incorporates historical data and estimates potential 

prediction errors in its assessments, allowing for the quantification of uncertainty through 

interpolation that estimates the probability of occurrence and distribution of precipitation 

volumes (NCAR, 2022). 

Previous studies, such as the Bolivia Surface Water Balance (BHSB), used hydrological 

information at a monthly scale (Ministry of Environment and Water Bolivia, 2018). In the 

present model, hydrological data are used at a daily scale 

Previous studies, such as the Bolivia Surface Water Balance (BHSB), used hydrological 

information at a monthly scale (Ministry of Environment and Water Bolivia, 2018). In the 

present model, hydrological data are used at a daily scale, along with spatial refinement focused 

on four prioritized sub-basins. Daily precipitation and temperature inputs were obtained from 

the GMET (Gridded Meteorological Ensemble Tool), which provides spatially gridded 

meteorological data that account for variability in precipitation distribution across the study 

area (NCAR, 2022). In the Amazonian portion of the model, annual precipitation varies 

approximately from 500 mm to over 6000 mm, reflecting both topographic and regional 

climatic gradients. 

The downscaling procedure was conducted in three stages: first, the hydrological model was 

adapted from a monthly to a daily temporal resolution; second, runoff coefficients were verified 

using observed flow data from the region’s hydrometric stations; and third, the model was 

calibrated and validated at the daily scale to ensure reliable projections under the same 

conditions.  

The adaptation of the continuous hydrological model in WEAP incorporated data on vegetation 

cover and soil types, along with climatic variables such as relative humidity, wind speed, and 

sunshine hours, projected on an annual cyclical basis. Daily precipitation and temperature 

inputs were obtained from the Gridded Meteorological Ensemble Tool (GMET), which was 

also employed in the Bolivia Surface Water Balance (BHSB) (Ministry of Environment and 

Water Bolivia, 2018), (NCAR, 2022). 

The verification of runoff coefficients highlighted uncertainties in the GMET 2020 precipitation 

and temperature data, primarily associated with the infilling process, as well as with the density 

and spatial distribution of available meteorological stations. These factors influence the 

accuracy of gridded climate datasets and, consequently, hydrological simulations. Despite these 

limitations, GMET provides one of the most consistent and updated meteorological products 

for Bolivia, making it suitable for hydrological modeling applications at the daily scale (NCAR, 

2022). 

These sources of uncertainty affect the simulated runoff and its relationship with precipitation 

at the basin scale. In contrast to the national-level BHSB, which applied precipitation correction 

factors (PCF) in several basins to address underestimation issues, the present study focused on 

four priority basins where daily calibration was conducted using available hydrometric stations. 

Although sub-basins such as Zongo, Miguillas, Misicuni, Corani, and Ivirizu are not 

individually delineated in the current WEAP configuration, they are encompassed within the 

modeled macro-basins. Consequently, the calibration performed here provides a robust 

foundation for future refinements, including the explicit incorporation and calibration of these 

sub-basins in subsequent stages of model development. 



Runoff was validated at each hydrometric station by comparing the accumulated observed 

flows with precipitation data from the GMET-2020 meteorological grid. These precipitation 

values were multiplied by the basin area and the average daily rainfall. The results are 

summarized in Table 2, which presents the Runoff Coefficient (CR) and the Precipitation 

Correction Factor (PCF), both derived from the GMET-2020 dataset. These values were 

calculated using a code, script that considered only the periods with available observed flow 

data, within the complete model covering the entire national territory. 

Table 2: Runoff coefficients (CR) 

  

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

For the calibration of the hydrological model, the performance was evaluated using several 

widely recognized statistical criteria, including the Nash-Sutcliffe Efficiency (NSE), Kling-

Gupta Efficiency (KGE), Percent Bias (PBIAS), the Ratio of the Root Mean Square Error to 

the Standard Deviation of Measured Data (RSR), and the Logarithmic Nash-Sutcliffe 

Efficiency (Log-NSE). PBIAS measures the average tendency of simulated flows to 

overestimate or underestimate observed flows, providing a clear indication of model bias 

(Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F., 2009). NSE and Log-NSE assess 

NRO. CACHMENT CR GMET 2020 

1 Rurrenabaque 0.62 

2 Penhas Amarillas 0.49 

3 Portachuelo 2 estrellas 0.48 

4 El Sena 0.58 

5 Riberalta 0.55 

6 Cachuela Esperanza 0.49 

7 Paraiso 0.29 

8 Abapo 0.29 

9 Pailas 0.31 

10 Angostura 0.23 

11 La Belgica 0.25 

12 Puente Eisenhower 0.13 

13 El Carmen 0.23 

14 Puerto Villarroel 1.66 

15 Santa Rosa de Chapare 0.87 

16 Camiaco 0.49 

17 Gundonovia 0.37 

18 Los Puentes 0.60 

19 Puerto Almacen 0.60 

20 San Borjita 0.22 

21 Puerto Junin 0.41 

22 Puerto Siles 0.43 

23 Matto Grosso 0.19 

24 Pimenteiras 0.21 

25 Pedras Negras 0.18 

26 Principe 0.17 

27 Campamento More 0.17 

28 Guayanamerin 0.28 

29 Abuna 0.38 

30 Porto Velho 0.38 

31 Brasilea 0.29 

32 Rio Branco 0.27 



the goodness-of-fit between observed and simulated data, with Log-NSE giving additional 

weight to low flows for improved evaluation of base-flow conditions (Santos, L., Thirel, G., & 

Perrin, C., 2018) (U.S. Geological Survey, 2021). KGE evaluates correlation, bias, and 

variability, offering a comprehensive assessment of model performance (Gupta, H. V., Kling, 

H., Yilmaz, K. K., & Martinez, G. F., 2009) (Knoben, W. J. M., Freer, J. E., & Woods, R. A., 

2019) (Kling, H., Fuchs, M., & Paulin, M., 2012). Finally, RSR provides a normalized error 

metric derived from the RMSE, serving as a complementary indicator for model evaluation 

(Moriasi, et al., 2007) (Table 3, 4 and 5). 

Table 3: General statistical indices of watershed simulation accuracy (Moriasi, D. N., et al., 2015) 

Performance Rating RSR NSE PBIAS (%) Streamflow 

Very good 0.00 ≤ RSR ≤ 0.50 0.75 < NSE ≤ 1.00 PBIAS < ± 10 

Good 0.50 < RSR ≤ 0.60 0.65 < NSE ≤ 0.75 ± 10 ≤ PBIAS < ± 15 

Satisfactory 0.60 < RSR ≤ 0.70 0.50 < NSE ≤ 0.65 ± 15 ≤ PBIAS < ± 25 

Unsatisfactory RSR > 0.70 NSE ≤ 0.50 PBIAS ≥ ± 25 

The Kling-Gupta Efficiency (KGE) was employed as an additional performance metric to 

complement NSE and Log-NSE, providing a comprehensive assessment of the hydrological 

model’s ability to reproduce observed streamflow dynamics. KGE considers the correlation, 

variability, and bias between simulated and observed flows, offering a balanced evaluation of 

model performance across different flow regimes. Table 4 presents the classification of model 

performance based on KGE values, adapted from widely recognized hydrological modeling 

studies (Kling et al., 2012; Gupta et al., 2009; Moriasi et al., 2007; Andréassian et al., 2015; 

Bennett et al., 2013; Fowler et al., 2018; McCuen et al., 2006; Beven, 2018; Medici et al., 2019). 

This classification enables the identification of areas where the model performs very well, well, 

satisfactorily, or unsatisfactorily, thus supporting robust model evaluation and guiding future 

calibration efforts. 

Table 4: Hydrological model performance classification based on KGE 

Performance 
Rating 

KGE References 

Very good 0.90 ≤KGE ≤ 1.00 
(Kling, Gupta, & Andres, 2012) 

(Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F., 2009) 

Good 0.75 ≤ KGE < 0.90 
(Moriasi, et al., 2007) 

(Andréassian, V., Perrin, C., Michel, C., Usart-Sanchez, I., & 
Lavabre, J., 2015) 

Satisfactory 0.50 ≤ KGE < 0.75 
(Bennett, N. D., et al., 2013) 

(Fowler, K. J., Peel, M. C., Western, A. W., & Zhang, L., 2018) 

Unsatisfactory KGE < 0.50 
(McCuen, R. H., Knight, Z., & Cutter, A. G., 2006) 

(Beven, 2018) 
(Medici, G., Abrahão, R., Siqueira, J., & Marco, D. A., 2019) 

Source: Author elaboration based on the cited literature. 

In addition to traditional performance metrics such as NSE and KGE, the Log-Nash–Sutcliffe 

Efficiency (Log-NSE) was employed to evaluate the model’s capability in simulating low-flow 

conditions. Log-NSE applies the NSE criterion to logarithmically transformed streamflow data, 

thereby increasing the sensitivity to low flows and providing a more balanced assessment across 

the full range of observed discharges. The classification of model performance according to 

Log-NSE is presented in Table 5, based on established hydrological modeling studies 

(Pushpalatha et al., 2012; Perrin et al., 2001; Krause et al., 2005; Fowler et al., 2018; Beven, 

2018; Medici et al., 2019). This metric complements NSE and KGE by offering nuanced insight 

into the model’s performance under low-flow conditions, which are critical for hydropower 

planning and water resource management. 



Table 5. Classification of hydrological model performance based on Log-NSE 

Performance 
Rating 

Log-NSE References 

Very good 0.75 ≤ Log-NSE ≤ 1.00 
(Pushpalatha, R., Perrin, C., Le Moine, N., & Andréassian, V., 

2012) 
(Fowler, K. J., Peel, M. C., Western, A. W., & Zhang, L., 2018) 

Good 0.65 ≤ Log-NSE < 0.75 
(Perrin, C., Michel, C., & Andréassian, V., 2001) 

(Fowler, K. J., Peel, M. C., Western, A. W., & Zhang, L., 2018) 

Satisfactory 0.50 ≤ Log-NSE < 0.65 
(Krause, P., Boyle, D. P., & Bäse, F., 2005) 

(McCuen, R. H., Knight, Z., & Cutter, A. G., 2006) 

Unsatisfactory Log-NSE < 0.50 
(Beven, 2018) 

(Medici, G., Abrahão, R., Siqueira, J., & Marco, D. A., 2019) 

Source: Author elaboration based on the cited literature. 

RESULTS 

The hydrological model was calibrated and validated using observed flow data from four 

hydrometric stations within the Rurrenabaque and Gundonovia basins. Model performance was 

assessed using multiple statistical indicators: Nash–Sutcliffe Efficiency (NSE), Kling–Gupta 

Efficiency (KGE), Percent Bias (PBIAS), the ratio of the root means square error to the standard 

deviation of measured data (RSR), and Log-Nash–Sutcliffe Efficiency (Log-NSE). These 

metrics provide complementary insights into the model's ability to reproduce both high and low 

flows, capturing temporal variability and base-flow conditions relevant for hydropower and 

water management applications. 

Table 6 summarizes the model performance for each hydrometric station. The results indicate good to very good 

agreement between observed and simulated flows. 

Hydrometric 
Station Code 

Station NSE KGE 
PBIAS (%) RSR Log-NSE 

Q_AM_01 Q_EL KAKA 0.72 0.85 -0.24 0.53 0.73 

Q_AM_02 Q_LA PAZ 0.64 0.74 0.095 0.60 0.71 

Q_AM_03 Q_RURRENABAQUE 0.62 0.74 -0.16 0.62 0.74 

Q_AM_04 Q_GUNDONOVIA 0.56 0.74 1.8 0.67 0.59 

The highest performance is observed at Q_AM_01, with a KGE of 0.85 and Log-NSE of 0.73, 

classified as very good according to the criteria of Moriasi et al. (2007) and Kling et al. (2012). 

Q_AM_02 and Q_AM_03 display good performance, while Q_AM_04 is classified as satisfactory, 

reflecting slightly lower NSE and Log-NSE values but still adequate for hydrological 

applications. 

Figures 2–5 present the observed versus simulated daily flows for each station. These figures 

illustrate the model’s ability to reproduce the magnitude and temporal distribution of 

streamflow, including low-flow periods, which are particularly important for assessing 

hydropower potential. The Log-NSE values confirm that low flows are well captured, 

complementing the overall performance evaluation provided by NSE and KGE. 

Overall, the combined evaluation using NSE, KGE, RSR, PBIAS, and Log-NSE indicates that 

the model performs well in the study area. These results provide a robust basis for hydrological 

assessments and future water resource management and hydropower planning in these basins. 



 

Figure 2: Modeled and observed streamflow at Q_AM_01 hydrometric station. 

 

Figure 3: Modeled and observed streamflow at Q_AM_02 hydrometric station. 

 
Figure 4: Modeled and observed streamflow at Q_AM_03 hydrometric station. 

 
Figure 5: Modeled and observed streamflow at Q_AM_04 hydrometric station. 



DISCUSSION 

The evaluation of the WEAP hydrological model across the four hydrometric stations in the 

Q_AM_01, Q_AM_02, Q_AM_03, Q_AM_04 basins demonstrates that the model achieves 

satisfactory to very good performance, depending on the site and the selected statistical 

indicator. The Kling–Gupta Efficiency (KGE) and Log-Nash–Sutcliffe Efficiency (Log-NSE) 

proved to be the most informative metrics, as they integrate correlation, variability, and bias, 

while also providing sensitivity to low flows, which are critical for water resources management 

in the Bolivian Amazon. According to the classification criteria of Moriasi et al. (2007), Kling 

et al. (2012), and Pushpalatha et al. (2012), the model showed very good performance at 

Q_AM_01 (KGE = 0.85; Log-NSE = 0.73), good performance at Q_AM_02 and Q_AM_03, and 

satisfactory but acceptable performance at Q_AM_04. This gradient of performance across 

stations reflects both the spatial heterogeneity of the basins and the challenges of representing 

local hydrological processes with limited data. 

The satisfactory performance of the model, even under data-scarce conditions, confirms the 

robustness of WEAP as a decision-support tool. Nevertheless, the relatively lower NSE and 

RSR values at Q_AM_04 indicate that improvements are needed in representing runoff 

generation and flow routing in this sub-basin. Possible sources of uncertainty include errors in 

precipitation forcing from the GMET dataset, generalized soil and land-use parameterization, 

and the absence of explicit groundwater dynamics in the current model configuration. Previous 

studies (e.g., Beven, 2018; Medici et al., 2019) have emphasized that such structural and data-

related uncertainties can limit the predictive accuracy of semi-distributed hydrological models, 

particularly in regions with strong rainfall seasonality and complex geomorphology such as the 

Amazonian piedmont. 

An important finding is the ability of the model to capture low-flow conditions, as evidenced 

by the Log-NSE values above 0.70 at three of the four stations. This is particularly relevant for 

hydropower and water supply planning, where reliable simulation of baseflows is as important 

as capturing peak discharges. The performance of Log-NSE complements NSE and KGE, 

confirming that the model not only reproduces mean flow dynamics but also provides 

confidence in assessing water availability during dry periods. Such capability strengthens the 

model’s applicability for evaluating hydropower potential, ecosystem flow requirements, and 

drought resilience. 

Despite these encouraging results, the model still exhibits limitations in capturing extreme high-

flow events, as suggested by the moderate NSE and RSR values. This limitation is common in 

hydrological models calibrated with daily data (Fowler et al., 2018), where short-term rainfall–

runoff dynamics are smoothed out. Incorporating higher-resolution climate inputs, improved 

representation of soil infiltration, and sub-basin-scale parameter calibration could help address 

these challenges. Additionally, the integration of automated multi-objective calibration 

methods (e.g., SUFI-2, DREAM, or Bayesian approaches) would enable more systematic 

exploration of parameter space, reducing uncertainty and enhancing predictive skill. 

In summary, the hydrological modeling of the Rurrenabaque and Gundonovia basins 

demonstrates that WEAP, when evaluated with complementary statistical metrics (NSE, KGE, 

PBIAS, RSR, and Log-NSE), provides reliable results for hydrological assessments in data-

scarce contexts. While the performance ranges from satisfactory to very good across stations, 

the model successfully reproduces both seasonal variability and low-flow regimes, offering a 

sound foundation for hydropower planning, water allocation, and adaptation strategies under 



future climate variability scenarios. Continued refinement of input data and calibration 

strategies will further enhance its applicability as a strategic water management tool in Bolivia. 

CONCLUSIONS AND RECOMMENDATIONS 

The calibration and validation of the WEAP hydrological model in the Rurrenabaque and 

Gundonovia basins demonstrate that the model provides satisfactory to very good performance, 

depending on the station and the evaluation metric. The combined use of NSE, KGE, PBIAS, 

RSR, and Log-NSE proved essential for a comprehensive assessment, capturing both average 

flow dynamics and low-flow regimes that are critical for water resources management in the 

Bolivian Amazon. The model achieved very good performance at Q_AM_01, good performance 

at Q_AM_02 and Q_AM_03, and satisfactory but acceptable performance at Q_AM_04, reflecting 

both the robustness of WEAP and the spatial heterogeneity of hydrological processes in the 

study area. 

A key conclusion is that the model effectively reproduces low-flow conditions, as confirmed 

by Log-NSE values above 0.70 in most stations. This strengthens confidence in its applicability 

for hydropower planning, drought management, and ecological flow assessments, where 

reliable representation of baseflows is essential. However, limitations remain in the simulation 

of extreme high-flow events, highlighting the need for improved climate inputs, refined soil–

vegetation parameterization, and more detailed representation of runoff generation processes. 

Based on these findings, the following recommendations are proposed: 

1. Data improvement: Enhance the spatial and temporal resolution of precipitation and 

climate forcing data, particularly in poorly monitored sub-basins, to reduce input 

uncertainty. 

2. Parameter refinement: Implement sub-basin scale calibration of soil and land-use 

parameters to better capture spatial heterogeneity. 

3. Groundwater dynamics: Incorporate explicit representation of groundwater processes 

to improve flow routing and baseflow simulation. 

4. High-flow representation: Use higher-resolution hydrometeorological data and 

infiltration parameters to improve the simulation of extreme flow events. 

5. Advanced calibration: Apply automated multi-objective calibration techniques (e.g., 

SUFI-2, DREAM, Bayesian approaches) to systematically explore parameter space and 

reduce model uncertainty. 

6. Future applications: Extend the modeling framework to assess climate change impacts, 

hydropower potential, and water allocation scenarios, ensuring that future management 

strategies are based on robust and reliable hydrological simulations. 

In conclusion, despite existing limitations, WEAP has proven to be a reliable and practical tool 

for hydrological assessments in data-scarce regions such as the Bolivian Amazon. With 

continued refinement of input datasets and calibration strategies, its applicability as a decision-

support tool for integrated water resources management and climate adaptation in Bolivia can 

be further strengthened. 
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