9th International Scientific Conference of Agricultural Development and Sustainability
AGROCENTRO 2019
Aim: To determine the composition and diversity of the microbiota associated to Crassostrea sikamea treated during 30 days with Streptomyces strains N7 and RL8. Methods and Results: DNA was extracted from oysters followed by 16S rRNA gene amplification and pyrosequencing. The highest and lowest species diversity richness was observed in the initial and final control group, whereas Streptomyces-treated oysters exhibited intermediate values. Proteobacteria was the most abundant phylum (81.4-95.1%), followed by Bacteroidetes, Actinobacteria and Firmicutes. The genera Anderseniella, Oceanicola, Roseovarius, Ruegeria, Sulfitobacter, Granulosicoccus and Marinicella encompassed the core microbiota of all experimental groups. The genus Bacteriovorax was detected in all groups except in the final control and the depurated N7, whereas Vibrio remained undetected in all Streptomyces-treated groups. RL8 was the only group that harboured the genus Streptomyces in its microbiota. Principal component analysis showed that Streptomyces strains significantly changed oyster microbiota with respect to the initial and final control. Conclusions: Crassostrea sikamea treated with Streptomyces showed high species diversity and a microbiota composition shift, characterized by keeping the predator genus Bacteriovorax and decreasing the pathogenic Vibrio.
Aim: To determine the composition and diversity of the microbiota associated to Crassostrea sikamea treated during 30 days with Streptomyces strains N7 and RL8. Methods and Results: DNA was extracted from oysters followed by 16S rRNA gene amplification and pyrosequencing. The highest and lowest species diversity richness was observed in the initial and final control group, whereas Streptomyces-treated oysters exhibited intermediate values. Proteobacteria was the most abundant phylum (81.4-95.1%), followed by Bacteroidetes, Actinobacteria and Firmicutes. The genera Anderseniella, Oceanicola, Roseovarius, Ruegeria, Sulfitobacter, Granulosicoccus and Marinicella encompassed the core microbiota of all experimental groups. The genus Bacteriovorax was detected in all groups except in the final control and the depurated N7, whereas Vibrio remained undetected in all Streptomyces-treated groups. RL8 was the only group that harboured the genus Streptomyces in its microbiota. Principal component analysis showed that Streptomyces strains significantly changed oyster microbiota with respect to the initial and final control. Conclusions: Crassostrea sikamea treated with Streptomyces showed high species diversity and a microbiota composition shift, characterized by keeping the predator genus Bacteriovorax and decreasing the pathogenic Vibrio.
About The Speaker
Ricardo Medina